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range 18-42 GHz. Center frequencies of open end cavities using
0.218 mm wide lines on 0.272 mm thick alumina can be predicted
to within 0.45%. In addition, a four cavity technique for measuring
open end discontinuity capacitance and e%ﬁc( f) has been de-
scribed.
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Scattering at an Offset Circular Hole in a
Rectangular Waveguide

C. Sabatier

Abstract—A solution is given for the problem of scattering at an off-
set circular to rectangular junction and at a thick diaphragm, with an
offset circular aperture, in a rectangular waveguide. The method used,
is mode matching for computing one discontinuity. The difficulty aris-
ing from the fact that the eigenmodes of the two waveguides are known
in different coordinate systems is overcome by simple transformation
for the evaluation of overlap integral between the eigenmodes of each
waveguide. Experimental results validate this method.

INTRODUCTION

Waveguide diaphragms with circular apertures are frequently
used as matching elements in microwave circuits (cavity filters,
waveguide to cavity coupling, etc). While centered holes have been
investigated by many authors [1]-[3], the case of offset holes has
not been addressed to our knowledge.

The discontinuity, presented Fig. 1, is investigated with the
method of field expansion into eigenmodes [4], where the three
types of overlap integrals are Vhh (TE modes in the two wave-
guides), Vee (TM modes in the two waveguides), Veh (TE modes
in the first waveguide, TM modes in the second). The fourth over-
lap integral between TM modes in the first waveguide and TE
modes in the second is zero [5].

The field expansion is performed on all TE and TM modes in the
two waveguides because there is no symmetry in this problem.

ANALYSIS

Since the common section between the two waveguides is cir-
cular (b = 2R), the three overlap integrals have been computed in
the first coordinate system noted O, in polar units (r|, 6,). Thus,
all of the electric fields of the two waveguides must be written in
this system. In fact, we write all fields in Cartesian units (x;, y;)
and we take the Jacobian when we compute the different overlap
integrals. For this reason, all field expressions given below are
written in function of r, and 6, even in the Cartesian coordinate
system, This method was given in [3] for a centered hole.
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Fig. 1. An offset circular to rectangular junction.

The electric fields of the circular waveguide are easily expressed [3]:
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8 is the Kronecker’s delta (6 = 1if k = I, § = 0 otherwise)
x;; is the /th root of J, (x),
Xy is the Ith root of J, (x).

The cigenmodes of the rectangular waveguides are separated into four cases according to the evenness of the modes on the x, and y,
directions of the second coordinate system noted O,. Only one case (i odd and j even for TE, or TM,, modes) is given:
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We transform these fields in funetion of (r,, 6,) in the same system by the method described in [3]:
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Fig. 2. Relations between the two coordinate systems.
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The method for going from O, (r2, 6,) to O, (ry, 8,), which is the
subject of this paper, is based on Graf’s addition theorem [6].
The relation between the two radii and angles are (Fig. 2):
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We obtain, for the three overlap integrals:
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if (r; = x/R), x is xj or x;; which depend on TE or TM modes in
the circular waveguide.
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Fig. 3. Comparison for the phase of the reflection coefficient of a small
hole in a WR7S waveguide.

The others cases, which depend on the evenness of i and j of TE
and TM modes of the rectangular waveguide, are evaluated in the
same way. The same formulas are analytically obtained if Rp = ¢¢
= 0 as in the centered junction. The infinite sums decreases very
rapidly, only 4 or 5 terms are computed for an error < 107,

For cascaded transitions, the evanescent fields are taken into ac-
count between each junction [4].

RESULTS

The first comparison is made for a small hole of 5 mm in diam-
eter, put in a WR75 waveguide. Its thickness is 2 mm. The offsets
are Rp = 2.5 mm and ¢, = 0 degree. If the magnitude of the
reflection coefficient is 1 in all the bandwidth of the rectangular
waveguide, the phase of this parameter decreases when the fre-
quency (10-15 GHz) increases. The comparison between experi-
mental values (solid line) and theoretical values (symbols) of the
phase presented in Fig. 3, is excellent.

Another test is made for a hole whose diameter is equal to the
height of the WR75 waveguide. It has the same thickness as in the
first case. The offsets between the two coordinate systems are R,
= 4 mm and ¢, = 0 degree. The measured (solid line) and com-
puted (symbols) reflection coefficients are compared in Fig. 4 in
magnitude and in phase. Good agreement is obtained.

CONVERGENCE

The main setback of the modal matching approach is the relative
convergence problem. Regarding this problem, the variation of the
reflection coefficient is investigated in function of the number of
TE and TM modes taken into account. The case used for this study
is the second experimental test. Amplitude and phase are presented
Table I (frequency 11 GHz, experimental data: 0.989746; 163.104
degrees) and Table II (frequency 14 GHz, experimental data:
0.940338; 149.727 degrees). The number of TE and TM modes
selected, affects the theoretical values as predicted. 22 TE modes
and 14 TM modes were taken into account for the first comparison
with experimental values (the error is less, than 1 degree); only 14
TE modes and 6 TM modes are sufficient to obtain convergence in
the second case. The number of modes necessary to achieve correct
theoretical values increases as the radius of the circular waveguide
decreases.

CONCLUSION

In this letter, a simple method is developed for taking into ac-
count offset circular hole in rectangular waveguide based on Graf’s
addition theorem. Analytically, the formulas given for the centered
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Fig. 4. Magnitude and phase of the reflection coefficient for a diaphragm
with an offset circular hole 1n a rectangular waveguide.

TABLE 1
™
TE 6 14 22 30
6 0.964223 0.963931 0.963712 0.963704
157.765 157.699 157.647 157.645
14 0.981161 0.98106 0.980919 0.980912
162.16 162.127 162.08 162.078
29 0.981545 0.981451 0.981311 0.981305
162.277 162.247 162.199 162.197
30 0.982863 0.982278 0.982659 0.982654
162.744 162.716 162.673 162.672
TABLE I
™
TE 6 i4 22 30
6 0.842836 0.840448 0.838674 0.838593
136.715 136.453 136.254 136.246
14 0.922106 0.921314 0.920217 0.920159
146.764  146.639 146.464 146.455
2 0.923472 0.922724 0.921623 0.921567
146.969 146.85 146.673 146.665
30 0.929271 0.928607 0.927665 0.927621
147.953 147.844 147.686 147.678
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transition are retrieved when the offsets are zero. However, a large
number of modes is required to obtain precise values.
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Moment Method Formulation of Thick Diaphragms
in a Rectangular Waveguide

Amlan Datta, B. N. Das, and Ajoy Chakraborty

Abstract—The paper presents a method of determination of the elec-
trical characteristics of two thick apertures in a rectangular wave-
guide. The coupled integral equations resulting from the boundary
condition of the magnetic field at the four interfaces are transformed
into matrix equations using method of moments. The numerical data
on reflection and transmission coefficients are evaluated. Comparison
between theoretical and experimental results is presented.

I. INTRODUCTION

The analysis of waveguide discontinuities in the form of thin and
thick apertures has been carried out by a number of workers [1]-
[4]. Marcuvitz used variational formulation for determining the
equivalent network parameters of diaphragms with zero axial thick-
ness and supplied experimental data on complex reflection coeffi-
cient for a diaphragm of thickness 0.08 cm in a rectangular wave-
guide [1]. The variational formulation was also applied to
cylindrical posts with small circular and rectangular cross-section.
The reference plane for lumped equivalent network representation
of this structure was taken as the plane of symmetry of the obstacle.
The application of this form is limited to obstacles having maxi-
mum linear dimension less than 10% of the waveguide broad di-
mension and for location with minimum distance of 30% of the
guide broad dimension from the side wall. The analysis of aper-
tures with finite axial thickness has also been carried out by Mar-
cuvitz using the static method [1. Sect. 8.7-8.8]. The results are
accurate for axial thickness much greater than the aperture width.
In this case, however, the reference plane for lumped equivalent
network representation has not been properly indicated presumably
because of application of the static method. Collin has suggested a
method for determination of the parameters of the equivalent T
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network of an inductive diaphragm with finite axial thickness [2].
The analysis is based on evaluation of the eigenvalues of the
impedance matrix of the T network. In addition to some confusion
about the reference plane for the network representation. the au-
thors didn’t find the method convenient for computation. The mo-
ment method formulation has recently been applied by Scharstein
et al. [3] and Auda and Harrington [4] for thin diaphragms in cir-
cular and rectangular waveguides. The analysis of Scharstein et al.
for an iris in a circular waveguide is based on aperture field for-
mulation and of Auda et al. for thin iris in a rectangular waveguide
is based on obstacle current method. In view of the potential ap-
plication of the above structure for microwave systems. it has been
felt desirable to present a method of analysis which is free from
these limitations.

In the present work attention has been paid to evaluate the elec-
trical characteristics of thick double apertures in a rectangular
waveguide. The analysis is carried out using moment method and
aperture field formulation. The aperture field method is used in lieu
of obstacle current method because of the following advantages.
The application of aperture field method permits use of entire do-
main sinusoidal basis function which gives a faster convergence
than the subsectional basis function used in obstacle current
method. The application of Galerkin’s technique leads to a sym-
metric moment matrix which reduces the computation time appre-
ciably. Same formulation can be applied to both inductive as well
as capacitive obstacles.

The rectangular aperture with finite axial thickness has been rep-
resented as a short rectangular waveguide. The axial thickness is
accounted for by introducing higher order waveguide modes in the
short waveguide connecting the input and output region [5]. The
expressions for the magnetic field generated due to the aperture
fields in the two interfaces are derived using modal expansion
method [6, Sect. 4.9]. The coupled integral equations resulting
from the boundary condition of the magnetic field at the four in-
terfaces are transformed into matrix equation using Galerkin's
method. The comparisons between the theoretical results is pre-
sented. Theoretical and expetimental data are also determined for
a single aperture for the sake of comparison with those presented
by Marcuvitz.

II. ANALYSIS

Fig. 1(a) shows the cross-sectional view of a rectangular wave-
guide containing two apertures. The longitudinal-sectional view of
the same is shown in Fig. 1(b).

For the purpose of analysis the apertures are considered as sec-
tions of waveguides as shown in Fig. 1(b). The modes existing in
the two apertures are assumed to be of the type TEq (i = p, q) [5].

Using modal expansion formulation suggested by Harrington {6,
Sect. 4.9], the expressions for the back scattered (z < —7/2) and
forward scattered (z = 7/2) magnetic field at z = —¢/2 and z =
t/2 are expressed as

Hl(ep) = Vn [SinC {Rnp(wl)} cos {Snp(cl)}

— sinc {T,,(w))} cos {U,,(c))}] sin <%)> M

H(ey) = Vi lsine (R0} c0s {S,y(ca)}
i . [y
— sinc {T,,(w)} cos {U,,()}] sin <7> @
Ha(ep) = —Hl(é‘p) and Hn(eq) = _Hl(eq) 3)
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